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Abstract
Wededuce and discuss the implications of self-similarity for the robustness to failure ofmultiplexes,
depending on interlayer degree correlations. First, we define self-similarity ofmultiplexes andwe
illustrate the concept in practice using the configurationmodel ensemble. Circumscribing robustness
to survival of themutually percolated state, wefind a new explanation based on self-similarity both for
the observed fragility of interconnected systems of networks and for their robustness to failurewhen
interlayer degree correlations are present. Extending the self-similarity arguments, we show that
interlayer degree correlations can change completely the global connectivity properties of self-similar
multiplexes, so that they can even recover a zero percolation threshold and a continuous transition in
the thermodynamic limit, qualitatively exhibiting thus the ordinary percolation properties of
noninteracting networks.We confirm these results with numerical simulations.

1. Introduction

Self-similarity is defined in awide sense as the property of some systems to be, either exactly or statistically,
similar to a part of themselves. This property is found in certain geometric objects that are intrinsically
embedded inmetric spaces, so that distance in themetric space gives a natural standard ofmeasurement to
uncover similar patterns at different observation scales [1]. In complex networks, the definition of self-similarity
is not obvious sincemany networks are not explicitly embedded in any physical geometry and the only available
metric is the one induced by the collection of shortest path lengths between nodes. Thismetric has, in fact, been
used tomeasure the fractal and self-similar properties of complex networks [2, 3]. However, the small-world
property typically found in real complex networks strongly limits the range of scales where such properties can
be observed.

In the absence of a natural geometry, themain problem in the definition of self-similarity stems from the fact
that there is, a priori, noway to decidewhat is the ‘part’ of the system that should be compared to (and look alike)
the ‘wholeʼ. In this sense, self-similarity is not an intrinsic property of the systembut it is directly related to the
specific procedure to identify the appropriate subsystem. In previous work on single networks, self-similarity
was properly defined on the basis of a nested hierarchy of subgraphs and proved for general classes ofmodels.
These include random scale-freemodels with andwithout underlyingmetric spaces andmodels of growing
networks [4, 5]. Interestingly,metric networkmodels are able to provide a plausible explanation for key
topological properties observed in real networks [6–8], including scale-free degree distributions, high levels of
clustering, the small world property, and self-similarity.

Self-similarity has important implications in the global structure of networks and, in particular, in their
vulnerability to failures of their constituents. For instance, self-similarity alone—independently of the
divergence of the secondmoment of the degree distribution—explains the absence of a percolation threshold in
random scale-free networks, with a proof that avoids the usual locally tree-like and other limiting assumptions
[5].Moreover, the same proof applies to ensembles of graphswith highly non-trivial topologies as long as they
belong to the same self-similarity class. In [5], the absence of a percolation thresholdwas also proved and
numerically confirmed in ensembles of randomnetworks embedded inmetric spaces with strong clustering and
in ensembles of growing networkswith bounded topologicalfluctuations.
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In this work, we extend the concept of self-similarity tomultiplexes—defined as networks of nodes
interconnectedwith different classes of links, each class named a layer [9]. Out of themany different self-similar
ensembles in single networks, we chose for simplicity the configurationmodel and generalize it tomultiplexes in
order to state explicitly the definition and significance of self-similarity in such structures. In particular, we study
the implications of self-similarity for the robustness to failure ofmultiplexes with andwithout interlayer degree
correlations. Circumscribing robustness to survival of themutually percolated state [10, 11], we find a new
explanation based on self-similarity both for the observed fragility of uncorrelated scale-free systems of
networks [10, 12] and for their robustness to failure when correlations are present [13, 14].Wefind that
interlayer degree correlations can change completely the global connectivity properties of self-similar scale-free
multiplexes, which can recover a zero percolation threshold and a continuous transition in the thermodynamic
limit qualitatively exhibiting so the ordinary percolation properties of single scale-free networks.

The paper is organized as follows. In section 2, we review the definition of self-similarity in single-layered
networks and extend it tomultiplexes. In section 3, we discuss the self-similarity properties of the canonical
configurationmodel generalized tomultiplexes, bothwith andwithout interlayer degree correlations. In
section 4, we use thismodel to deduce and discuss the implications of self-similarity onmutual percolation and
check our predictions against numerical simulations. Finally, we conclude in section 5.

2. Self-similar ensembles

In the next section, wefirst review ourfindings on this topic in the case of single networks and, then, extend them
to the case ofmultiplexes.

2.1.One-layered self-similar ensembles
Let α ({ })be an ensemble of sparse graphs in the thermodynamic limit, where α{ } is the set ofmodel
parameters. For example, in the case of the Erdös–Rényimodel [15, 16] the set α{ } is just the average degree 〈 〉k .
Consider a transformation ruleT that for each graph α∈ G ({ }) selects one ofGʼs subgraphs. Denote the
ensemble of these subgraphs by α ({ })T . The ensemble α ({ }) is called self-similar with respect toT if the
transformed ensemble is the same as the original one except for some transformation of themodel parameters,
that is

α α= ({ }) ( { }), (1)T T

where α{ }T are the ensemble parameters after the filtering process. This definition does not assume anything
about the transformation ruleT and, in fact, the same ensemble can be self-similar under different rules. As a
simple example consider the Erdös–Rényimodel with ≫N 1nodes and connection probability among pairs of
nodes = 〈 〉p k N . Now consider the transformation rule that selectsNTnodes uniformly at randomout of the
originalNnodes, alongwith their connections. It is easy to see that such subgraph belongs to the Erdös–Rényi
ensemble butwith an average degree

=k
N

N
k . (2)T

T

Note that the average degree of subgraphs generatedwith this procedure is smaller than the average degree of the
original network.

In the ensembles studied in [4, 5]—including the standard configurationmodel with scale-free degree
distributions and zero clustering, scale-free networks withfinite clustering andmetric structure, and non-
equilibriumnetworks, like generic growing networkmodels—, the onlymodel parameter that changes after the
transformation is the average degree of the subgraph, 〈 〉k T . Typically, this average is amonotonic function of the
ratio between the size of the original networkN and the size of the subgraphNT, that is

=k f
N

N
k . (3)T

T

⎛
⎝⎜

⎞
⎠⎟

In this case, the sign of its derivative determines the class of self-similarity of themodel and, in turn, the
structural properties of the entire network. For instance, when f(x) is amonotonic increasing function, any
graph of the ensemble contains subgraphs with an arbitrary large average degree within the subgraph. This is the
case of the configurationmodel with a scale-free degree distributionwith exponent γ< <2 3 and, remarkably,
ofmany real-world networked systems [4]. This simple property, together with the fact that these subgraphs
belong to the same ensemble, imply a zero percolation threshold in the thermodynamic limit [5], even if γ ≫ 3.
Remarkably, this is a consequence of self-similarity alone and not of the divergence of the secondmoment of the
degree distribution. The proof in [5] represents a powerful alternative to typical techniques applied to the study
of percolation in complex networks, since it avoids the usual locally tree-like and other limiting assumptions.
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2.2. Self-similarmultiplexes
Formally, self-similarity of randommultiplexes can be defined as for single networks. As in equation (1), let

α ({ })be amultiplex ensemble of sparse graphs in the thermodynamic limit, where α{ } is the set ofmodel
parameters, now including sets ofmodel parameters for each layer. Consider a transformation ruleT that for
eachmultiplex α∈ M ({ }) selects one ofMʼs subgraphs. This transformation rule selects nodes in the
multiplex according to specific conditions imposed on each layer. Denote the ensemble of subgraphs by

α ({ })T . The ensemble α ({ }) is called self-similar with respect to the transformation ruleT if the
transformedmultiplex ensemble is the same as the original one except for some transformation of themodel
parameters, that is

α α= ({ }) ( { }). (4)T T

To get insights on the nature and consequences of self-similarity inmultiplexes, hereafter we focus on the soft
version of the configurationmodel, the simplest self-similar ensemblewith a non-trivial degree distribution [5].
Nevertheless, the generalization to other ensembles is straightforward.

3. The soft configurationmodel

The configurationmodel is defined as themaximally random ensemble of graphswith a given degree sequence,
that is, a predefined degree assigned to each single node of the network [17–19]. The soft configurationmodel
(SCM) is very similar to the original one except that, in this case, nodes are given their expected degrees and not
their actual degrees [20–23]. Thismakes themodelmore appropriate to deal with structural topological
correlations that are unavoidable when the degree distribution is broadly distributed [24, 25].

In the particular case of scale-free networks, graphs are generated by assigning to each of theN nodes a
hidden variable κ drawn from a power-law probability density ρ κ γ κ κ= − γ γ− −( ) ( 1) 0

1 , κ κ⩾ 0. Nodes with
expected degrees κ and κ′ are then connectedwith probability κ κ μκκ′ ≡ ′r r( , ) ( ), where function ⩽r x( ) 1 is
an arbitrary functionwith =r (0) 0 and ′ ≠r (0) 0. Constant μ fixes the average degree 〈 〉k through the
relation

μ
κ κ

γ
γ

=
′

=
′

−
−

k

Nr

k

Nr(0) (0)

2

1
. (5)

2
0
2

2⎛
⎝⎜

⎞
⎠⎟

With this choice, it is easy to see that the average degree of a node with hidden variable κ is proportional to κ,
so that the degree distribution scales as well as a power lawwith exponent γ [24].When function r(x) is chosen
to be

=
+

r x
x

( )
1

1 1
, (6)

themodel producesmaximally randomgraphswith a given expected degree sequence [26–28]. Random graphs
with arbitrary structural correlations can be generated aswell by choosing the appropriate connection
probability r(x) [24].Hereafter, we use themaximally random ensemblewith connection probability given in
equation (6). This particular ensemble has, in the thermodynamic limit, only two free parameters, the exponent
of the degree distribution γ and the average degree 〈 〉k . Notice that κ0 is a dummyparameter that can be absorbed
in the definition of the hidden variable κ so that it can be set to unity at anymoment. However, it is useful to keep
it during the transformation rule that we apply below.Unlike the regular configurationmodel (where the actual
degrees are fixed a priori) nodes in the canonical configurationmodel can end up having zero degree and,
therefore, the average degree 〈 〉k can take any positive value, even below 1.

As already discussed, ensemble self-similarity is always tied to a particular prescription to extract subgraphs
out of a given graph. In the case of ensembles of scale-free networks, the natural transformation rule selects
subgraphs by removing all nodes with degrees lower than a given threshold value. In the case of the SCM, the
transformation ruleT removes nodes with hidden variable κ below an arbitrary threshold κ κ>T 0. In [4, 5], we
proved that the ensemble of subgraphs so obtained is the same as the original one butwith a transformed average
degree. In the case of ensembles of scale-free networks, the natural transformation rule selects subgraphs by
removing all nodes with degrees lower than a given threshold value (see figure 1).

κ
κ

= =
γ−γ

γ
−
−

k k
N

N
k . (7)T

T

T

0

33
1⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

This simple result provides important insights on howhubs are organizedwithin the network.Wefirst notice
that by varying continuously the threshold κT , we obtain a nested sequence of subgraphs.When γ > 3, 〈 〉k T is a
monotonic decreasing function of κT . This implies that subgraphsmade of high degree nodes are very sparsely
connected among them. Thus, even if the original graph is globally connected, connectivity between two hubs is
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alwaysmediated by chains of low degree nodes.When γ < 3, 〈 〉k T is amonotonic increasing function of κT . In
turn, this implies that, in the thermodynamic limit, any graph always contains subgraphsmade of hubswith
arbitrary high connectivity, even if the average degree of the original graph 〈 〉k is arbitrarily small. This implies
that such graphs always have a giant connected component and, so, the original network has a zero percolation
threshold [5].

3.1. Generalization of the SCM formultiplexes: self-similarity properties
In this paper, we restrict our analysis to self-similarmultiplexes with two layers. Generalizations tomore than
two layers or other ensembles are again straightforward. In the two-layered SCM, each node is characterized by
two hidden variables, κa and κb, distributed according to

ρ κ κ
κ κ

ρ
κ
κ

κ
κ

=( , )
1

ˆ , , (8)a b
a b

a

a

b

b0 0 0 0

⎛
⎝⎜

⎞
⎠⎟

with κ κ⩾a a0, κ κ⩾b b0, and∫ ∫ ρ =
∞ ∞

x y x yˆ ( , )d d 1
1 1

. In this way, κ〈 〉a and κ〈 〉b are proportional to

parameters κa0 and κb0 so that they can be set to unity at anymoment. In each layer, pairs of nodes connect with
connection probabilities μ κ κ ′r ( )a a a a and μ κ κ ′r ( )b b b b , where parameters μa and μb read

μ
κ

μ
κ

=
′

=
′

k

Nr

k

Nr(0)
and

(0)
. (9)a

a

a a
b

b

b b
2 2

Notice that the only relation between the two layers comes from the joint distribution ρ κ κ( , )a b , whichmay
encode interlayer degree-correlations.

As for the transformation ruleT, analogously to the case of single networks, given amultiplex generated
from this ensemble, we remove nodes in themultiplex such that their hidden variables κa and κb in each layer are
below certain threshold values κaT and κbT . Next, we analyze under which conditions themultiplex SCM is self-
similar.

3.1.1. Self-similar scale-freemultiplexes with uncorrelated interlayer degrees
When κa and κb are uncorrelated variables, the joint degree distribution corresponds to the factorization of the
degree distributions of each layer, so that self-similar ensembles of subgraphs can only be achieved if the one-
layer degree distributions are scale-free, that is

ρ γ γ= − − γ γ( )( )x y x yˆ ( , ) 1 1 . (10)a b
a b

Thus ρ x yˆ ( , ) is the factorization of two homogeneous functions of degrees γ− a and γ− b, which gives a bi-
dimensional homogeneous function of degree α γ γ− = − +( )a b . After the transformation, the remaining nodes
in the subgraph are distributed according to the same scale-free distributions oncewe replace κ κ→a aT0 and
κ κ→b bT0 . The number of nodes that remain in the subgraph is

κ
κ

κ
κ

=
γ γ− −

N N . (11)T
a

aT

b

bT

0
1

0
1a b⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

The transformation does not change either the hidden variables offiltered nodes or their connection probability,
which implies that parameters μa and μb remain invariant in the subgraph. Therefore, by combining
equations (9) and (11), we conclude that the transformed ensemble is self-similar with re-scaled average degrees

κ
κ

κ
κ

=
γ γ− −

k k (12)a T
b

bT

aT

a
a

0
1

0

3b a⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

and

κ
κ

κ
κ

=
γ γ− −

k k . (13)b T
a

aT

bT

b
b

0
1

0

3a b⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Notice that inmultiplexes with uncorrelated degrees the two thresholds, κaT and κbT , are completely
independent.

3.1.2. Self-similar scale-freemultiplexes with correlated degrees
Inmultiplexes with correlated degrees, self-similarity is achievedwhen the joint distribution ρ x yˆ ( , ) is a bi-
dimensional homogeneous function of degree α, that is

ρ ρ= ∀α−ax ay a x y aˆ ( , ) ˆ ( , ) . (14)
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When the degrees in each layer are correlated, this condition enforces a relation between the two thresholds, i. e.
κ κ κ κ=aT a bT b0 0, which are not independent anymore 3. Using the homogeneity property equation (14), it is
easy to check that the number of nodes within a subgraphwith κ κ>a aT and simultaneously
κ κ κ κ κ> =b bT b aT a0 0 is

κ
κ

=
α−

N N . (15)T
a

aT

0
2⎛

⎝⎜
⎞
⎠⎟

As in the case of uncorrelatedmultiplexes, the transformation does not change either the hidden variables of
filtered nodes or their connection probability, which implies that parameters μa and μb remain invariant in the
subgraph. Then, by combining equations (9) and (15)we conclude that the ensemble is self-similar with re-
scaled average degrees in each layer

κ
κ

κ
κ

= =
α α− −

k k k kand . (16)a T
aT

a
a b T

aT

a
b

0

4

0

4⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

4. Robustness ofmutually percolated states in self-similar scale-freemultiplexes

Asmentioned in the introduction, the percolation properties of systems of networks can be radically different as
compared to single networks depending on the patterns of connectivity between layers [10, 13, 14, 29].We shall
show that self-similarity can explain several of the previous results on the robustness of systems of networks and
can predict newbehaviors in a large class of self-similarmultiplexes. Notice that the results presented here are
qualitatively valid inmultiplex ensembles beyond the SCM if those present similar self-similarity properties.

Inmultiplexes, the percolated state can be defined according to different criteria. Here, we assume that nodes
in each layermutually depend on nodes in other layers and that only the nodes that belong to the giantmutually
connected component remain functional. The giantmutually connected component of amultiplex network
(MCC) is defined as the largest set of nodes that aremutually connected by at least one path in each layer
traversing nodes in theMCC [10, 11].

For single networks, perturbations in the formof a random failure of a fraction of − p1 nodes produce
typically a critical phase transition for a specific value pc, so that below pc the network is fragmented into small
components. Inmultiplexes with aMCC, perturbations can propagate back and forth between the layers so that
even small initial failures can produce avalanches of damage leading to a discontinuous collapse of theMCC
[10]. Site percolation on randommultiplexes has shown indeed a discontinuous hybrid transition at somefinite
value of the number of nodes removed, where the size of theMCCdrops abruptly to zero, like in afirst order
transition, while the critical behavior is only observed above the transition, like in a second-order one [10, 12].
So, perturbations are amplified by the interaction between the layers and systems of networks are said to bemore
fragile as compared to single networks. The presence of interlayer degree correlations can however revert the
situation [30]. Interdependent networkswithmutually dependent nodes having identical degrees are
statisticallymore robust than random coupled networkswith the same degree distribution. Besides, when
γ < 3, they disintegrate via a second-order phase transition—in the sameway as noninteracting networks—and
are thus very resilient against random failures [13].More structured systems of correlated interconnected
networks [14] orwith overlaps [31] have been proved to be robust to failure aswell. In [31], the authors consider
link overlap (links existing in both layers simultaneously) as the source of correlations. In this case, overlapping
links form a single network, thuswith thewell-knownpercolation properties of complex networks. Notice,
however that while overlap induces inter-layer degree correlations, the opposite is not true in general.

Next, we assess the resilience ofMCCs to random failures in scale-freemultiplexes on the basis of their self-
similarity properties and check numerically our predictions. Before that, we note that the average degree 〈 〉k in
the SCMensemble defined in section 3 is equivalent to the site percolation probability p and it can then be used
in robustness studies as the control parameter. Indeed, when a random fraction of − p1 nodes is removed from
a given graph of the ensemble, the hidden variables κ of the remaining nodes are distributed as in the original
graph and the connection probability among them remains unchanged.However, the number of nodes in the
subgraph is pN. Since μ remains unchanged, equation (5) implies that this ensemble is self-similar under a
random removal of nodes with amodified average degree 〈 〉 = 〈 〉k p kT . Thismeans that, in the thermodynamic
limit, removing a random fraction of nodes − p1 of a networkwith average degree 〈 〉k is equivalent to

3
For the two thresholds to be independent and the ensemble self-similar, onewould need a scaling relation of the type

ρ ρ= α β− −ax by a b x yˆ ( , ) ˆ ( , ) for any a and b. However, the only function in 2 that satisfy this condition is the factorization of two power
laws, which correspond to the case of amultiplexwithout degree correlations.
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generating a graph of the same ensemble butwith an average degree 〈 〉p k . Because of this equivalence, hereafter
we use 〈 〉k as the control parameter of the percolation properties of the ensemble.

4.1. Fragility of uncorrelated scale-freemultiplexes explained by self-similarity
Single scale-free self-similar networks in the thermodynamic limit with γ < 3 always contain subgraphsmade of
hubswith arbitrary high connectivity, even if the average degree of the original graph 〈 〉k is arbitrarily small,
which implies that such graphs always have a giant connected component and, so, a zero percolation threshold
[5]. Thismakes such structures robust to random failures. In the case of uncorrelatedmultiplexes, the question
is whether it is still possible tofind a continuous set of nested subgraphs such that the average degrees within the
subgraphs increase in both layers simultaneously. In that case themultiplexwould be robust to random failures,
being able tomaintain aMCCdespite perturbations.

To have a nested ensemble of subgraphs, κbT must be either constant or amonotonic increasing function of
κaT (or vice versa). Let κ κ= g ( )bT aT be such function. Then, the condition for equations (12) and (13) to be
simultaneouslymonotonic increasing functions of κaT can be obtained by imposing a positive derivative of
equations (12) and (13)with respect to κaT , that is

γ
γ

κ κ
κ κ

γ
γ

−
−

<
′

<
−
−

g

g

1

3

( )

( )

3

1
. (17)a

b

aT aT

a aT

a

b0

However, these inequalities can only hold if the lower bound is smaller than the upper bound, which is
equivalent to the inequality α γ γ= + < 4a b . This is clearly not possible in scale-free sparse graphswith γa and γb

in the range (2, 3), implying that, while it is possible to have a sequence of subgraphs with increasing average
degree in one of the layers (if one of the inequalities is satisfied), the same sequence of subgraphs has necessarily a
decreasing average degree in the other layer.

This result explains the fragility of scale-free systems of networks first reported in [10]. In single scale-free
networks, global connectivity ismainly provided by the interconnection of high degree nodes, which gives the
main explanation for their robustness. In uncorrelated scale-freemultiplexes, the situation is different. Our self-
similarity argument starts by selecting a subgraph of high degree nodes in layer A and so an almost fully
connected subgraph that contains themajority of nodes of the giant component of layer A.However, as our
previous result shows, the average degree in layer B of the subgraph induced by the subgraph inA is smaller than
in B and, thus, its giant component in B—which is the candidate set to contain theMCCof themutually
percolatedmultiplex—is also reduced.We could now select a subgraph of the subgraph in layer B such that its
average degree is high enough to contain its layer B giant component. However, the average degree of the
induced sub-subgraph in layer Awill decrease below its original value, and so its giant component. This process
can be iterated at infinitum and, at each iteration, the size of the potential subgraph to contain aMCC is reduced.
We thus conclude that theMCCcannot be sustained by high degree nodes alone andmust rely on the
connectivity of low degree nodes. Thismakes scale-freemultiplexes alwaysmore fragile thanmore
homogeneous networkswith the same average degree.

4.2. Robustness of correlated scale-freemultiplexes explained by self-similarity
The picture changes completely when the degrees in each layer are positively correlated. In the case of sparse
scale-free self-similarmultiplexes with uncorrelated degrees in the two layers, α γ γ= + > 4a b so that the
conditions for a stableMCCare not fulfilled.However, when κa and κb are positively correlated, it is possible to
find ensembles with α< <3 4. As an example, consider the joint distribution

ρ
γ γ

=
−
+

γ

γ

−

+
x y

x y
ˆ ( , )

( 1)2

( )
. (18)

1

1

Itsmarginal distribution is ρ γ= − +γ γ− −x xˆ ( ) ( 1)2 (1 )1 4. Fromhere, the conditional average is
γ γ〈 ∣ 〉 = + −x y y( ) ( 1), so that the correlation between x and y increases when γ → 2. The joint distribution

equation (18) is a homogeneous functionwith α γ= + 1. Therefore, according to equations (16), when γ < 3
the ensemble has self-similar subgraphswith increasing average degree in both layers simultaneously. This
readily implies that the ensemble always possesses aMCC so that its percolation threshold is zero in the
thermodynamic limit. Besides, the ‘transition’ is continuous, in the sense that the relative size of theMCC
approaches zeromonotonously when →p 0. This generalizes the result found in [13] for networkswith
identical degrees in both layers andmakes an important step forward as it quantifies the precise level of
correlations (and so the value ofα) that is needed to go from a hybrid discontinuous transition to a continuous
one.We should also note that, as opposed to the result in [13], our derivation is exclusively based on the property

4
Notice that a homogeneous distribution in two dimensions does not imply that itsmarginal is also a homogeneous function.
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of self-similarity and, thus, also applies to ensembles that are not locally tree-like, like networks embedded in
metric spaces [4, 5].

4.3. Numerical simulations
To check numerically the predicted percolation properties of self-similar scale-freemultiplexes, we generated
two-layeredmultiplexes using the canonical configurationmodel. In all cases, = ×N 5 105 and 〈 〉 =k 2min .
For uncorrelated scale-freemultiplexes, we used the joint probability distribution equation (10), while we
implemented correlations according to equation (18). In practice, for each nodewe first draw a hidden degree
in one of the layers according to themarginal probability density ρ xˆ ( ). The hidden degree in the other layer is
then generated from the conditional probability density ρ ρ ρ∣ =y x x y xˆ ( ) ˆ ( , ) ˆ ( )with the value of x previously
generated. Once hidden degrees in both layers have been assigned, each pair of nodes is evaluated and
connected in each layer with a probability given by equation (6). Finally, to computemutually connected
components, we implemented an efficient algorithmbased on [32], which keeps track of all theMCCs, not
only the giant, present in amultiplex. The algorithm represents each layer of themultiplex by the dynamic
connectivity structure defined in [33]. This structure allows formaintaining information about network
components and their sizes, while updating the network by deletion or insertion of edges. The algorithm
works in two phases. First, we findMCCs in the initialmultiplex and second, we calculate the size of the giant
MCC for all values of the parameter p.

To compute allMCCs in the initialmultiplex, we identify connected components for each layer separately
and if needed, we reconnect all single components by adding aminimumnumber of ad hoc edges. Thus, after
this step every layer is a single connected component and themultiplex a singleMCC.Next, we sequentially
delete all ad hoc edges. Each single removal creates two separated components in the given layer.We then check
all possible node pairs, where each node in the pair belongs to a different component and remove, in all other
layers, edges connecting them.Whenever any removed edge breaks a connected component into two, we have to
continuewith the removal of all edges that connect disconnected components in all other layers. Finally, when
all ad hoc edges are removed, all layers consist of connected components corresponding toMCCs. In the second
phase, we generate a random sequence defining the order of node removals. Removal of each node is
accomplished by removing all its adjacent edges from all layers. Every edge is removed in the sameway as ad hoc
edges in the first phase of the algorithm. Similarly as in the first phase, after removing the node all layers consist
of connected components corresponding toMCCs. The size of the largest component is outputted as the size of
the largestMCC for the corresponding p value.

In figure 2, we show the average degrees in the subgraphs and the size of the largest connected components
in each layer and theMCC as a function of the filtering thresholds κaT and κbT . In all cases, networks are scale-
free with γ = 2.8. In uncorrelatedmultiplexes, the average degrees of the subgraphs cannot increase
simultaneously as the thresholds increase. This is shown in figure 2(a) for κ κ=aT bT and in figure 2(c) for
κ κ= = 1bT b0 . As clearly seen in the figures, the only possibilities are that the average degrees decrease
simultaneously (when κ κ=aT bT ) or that the average degree of one of the layers increases while the other
decreases (when κbT is constant). This induces the fragility of theMCCwhich, as shown in figures 2(b) and
(d), reduces its size abruptly at some relatively small value of the threshold. Interlayer degree correlations
change completely the picture. In figures 2(e) and (f), we show the average degrees in the subgraphs and the

Figure 1. Illustration of a self-similar ensemble of graphs embedded into ametric space, a circle of radius ∼R N , under a
transformation that removes nodes with degrees below a certain threshold [4]. In this visualization, each node is given a radial
coordinate inversely proportional to its degree so that we obtain the desired subgraph by removing all nodes outside the blue dashed
circle.
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size of the different components for κ κ=aT bT in a canonical configurationmodelmultiplex ensemble with
the joint degree distribution given by equation (18). In this case, it is possible to produce sequences of
subgraphs with increasing average degrees in both layers simultaneously, so that theMCCbecomes very
robust. Finally, the inset in figure 2(f) shows the relative size of theMCC (relative to the remaining number of
nodes after the filtering process), which approaches 1 for large values of the thresholds, indicating that, as
predicted, such self-similarmultiplex contains a small butmacroscopic subgraph that is completely
connected in both layers simultaneously.

To get further insights into the percolation properties of self-similarmultiplexes, we adopt the
conventional percolation criterion ofmeasuring the breakdown of the largestMCC.We computed the
relative size of the largestMCC versus the fraction of nodes p remaining in themultiplex for different values of
the power-law exponent γ. Results are shown in figure 3(a) formultiplexes with uncorrelated degrees and in
figure 3(b) for correlated ones. For all values of γ, the transition between themutually percolated and the
fragmented states is discontinuous in the uncorrelated case while it is continuous and approaching zero in the
correlated case. This can be corroborated by the scaling of the susceptibility vs. the system size, where the

Figure 2.Average degrees (left column) and the size of the largest connected components (right column) as a function offiltering
parameters κaT and κbT . Panels (a) and (b) show results for amultiplex networkwith uncorrelated degrees where κ κ=aT bT . Panels
(c) and (d) show results for amultiplex networkwith uncorrelated degrees where κbT isfixed to theminimumvalue κb0. Panels (e)
and (f) show the results for amultiplex networkwith correlated degrees where κ κ=aT bT . Solid lines correspond to the analytical
results given by equations (12), (13) and (16). In all cases, themultiplex network is composed of two layers with = ×N 5 105 nodes,
γ = 2.8, 〈 〉 =k 2min , andwe evaluated the absolute size of the largest connected components SaT and SbT in individual layersA andB,
the size of theMCC ST, and the size of the networkNT after applying the corresponding transformation.
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susceptibility χ is defined as 5

χ =
−S S

S
. (19)

2 2

Here S is the size of the largestMCC at any value of p and averages are taken over a large number of complete
random sequences of node removals. This quantity is able to distinguish between discontinuous, continuous,
and hybrid phase transitions. In continuous phase transitions, χ shows a clear peak close to the critical point that
diverges as the system size increases. Instead, in discontinuous transitions, χ shows a discontinuity at the critical
point but no dependence on the system size. In the case of hybrid phase transitions, χ shows a diverging peak
approaching the critical point fromone side, a discontinuity, and then a size independent behavior on the other
side. According to these criteria,figure 3(c) indicates that the transition is hybrid inmultiplexes with
uncorrelated degrees whereasfigure 3(d) indicates that χ has a continuous divergence with a peak that
approaches zero in the thermodynamic limit as a power law, while the height of the peak diverges also as a power
law. This is clearly visible infigure 4, wherewe show the behavior of the position and height of the peak, pmax and
χmax, for different values of γ. These results clearly corroborate our theoretical prediction about a zero
percolation threshold butwith critical fluctuationswhen →p 0.

5. Conclusions

Self-similarity is a widespread property in networkmodels and has also been observed inmany real-world
networks [4]. Beyond themathematical beauty of self-similarity, this property has important implications for
the structural properties of networks. The power of the concept was illustrated in single-layered networks by the
proof of a zero percolation threshold for a general class of self-similar networks, which only required the self-
similarity property with a hierarchy of nested subgraphs whose average degrees growwith their depth in the
hierarchy [5] andwithout the need of usual limiting requirements.

Figure 3.Comparison between the percolation properties of scale-freemultiplexes with uncorrelated (left panel) and correlated (right
panel) degrees. Panels a and b show the relative size of the largestmutually connected component versus the fraction p of nodes
remaining undamaged. In both cases = ×N 5 105 and γ = 2.2, 2.5, and 2.8. Each curve corresponds to one complete random
sequence of node removals. Panels c andd show the susceptibility χ as a function of site occupation probability p for scale free
multiplexes of γ = 2.8 and different sizes. The different curves χ p( ) are computed from104 complete random sequences of node
removals. In all cases,multiplexes are composed of two layers and 〈 〉 =k 2min .

5
Notice that this is not the standard definition of susceptibility, which is definedwithN in the denominator instead of 〈 〉S . However, both

definitions have the same critical properties and diverge as power laws at the critical point of a continuous phase transition. Fromanumerical
point of view, our definition has been provenmore useful in heterogeneous networks and this is whywe adopt it here. Nevertheless, the
relation between their critical exponents can be found in [34].
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In this paper, we have extended the concept tomultiplexes and illustrated its importance by assessing the
robustness of scale-freemultiplexes in terms of their self-similarity properties. To state in a clear and explicit way
the definition and relevance of self-similarity, we have focused on the SCMensemble.However, we should stress
that the results presented here are qualitatively valid in othermultiplex ensembles with similar features, that is,
with similar self-similarity properties, degree distributions and interlayer degree correlations. Interestingly, the
observed fragility of scale-freemultiplexes or the robustness to failure of correlated systems of networks can be
explained and predicted based only on their self-similarity characteristics. In particular, we have found that
scale-freemultiplexes can recover a zero percolation threshold and a continuous transition in the
thermodynamic limit, and so the ordinary percolation properties of single scale-free networks. Self-similarity
can as well have important implications for other critical phenomena taking place inmultiplex structures when
the critical point is a function of the connectivity of the system.
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