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Abstract

We deduce and discuss the implications of self-similarity for the robustness to failure of multiplexes,
depending on interlayer degree correlations. First, we define self-similarity of multiplexes and we
illustrate the concept in practice using the configuration model ensemble. Circumscribing robustness
to survival of the mutually percolated state, we find a new explanation based on self-similarity both for
the observed fragility of interconnected systems of networks and for their robustness to failure when
interlayer degree correlations are present. Extending the self-similarity arguments, we show that
interlayer degree correlations can change completely the global connectivity properties of self-similar
multiplexes, so that they can even recover a zero percolation threshold and a continuous transition in
the thermodynamic limit, qualitatively exhibiting thus the ordinary percolation properties of
noninteracting networks. We confirm these results with numerical simulations.

1. Introduction

Self-similarity is defined in a wide sense as the property of some systems to be, either exactly or statistically,
similar to a part of themselves. This property is found in certain geometric objects that are intrinsically
embedded in metric spaces, so that distance in the metric space gives a natural standard of measurement to
uncover similar patterns at different observation scales [1]. In complex networks, the definition of self-similarity
is not obvious since many networks are not explicitly embedded in any physical geometry and the only available
metric is the one induced by the collection of shortest path lengths between nodes. This metric has, in fact, been
used to measure the fractal and self-similar properties of complex networks [2, 3]. However, the small-world
property typically found in real complex networks strongly limits the range of scales where such properties can
be observed.

In the absence of a natural geometry, the main problem in the definition of self-similarity stems from the fact
that there is, a priori, no way to decide what is the ‘part’ of the system that should be compared to (and look alike)
the ‘whole’. In this sense, self-similarity is not an intrinsic property of the system but it is directly related to the
specific procedure to identify the appropriate subsystem. In previous work on single networks, self-similarity
was properly defined on the basis of a nested hierarchy of subgraphs and proved for general classes of models.
These include random scale-free models with and without underlying metric spaces and models of growing
networks [4, 5]. Interestingly, metric network models are able to provide a plausible explanation for key
topological properties observed in real networks [6-8], including scale-free degree distributions, high levels of
clustering, the small world property, and self-similarity.

Self-similarity has important implications in the global structure of networks and, in particular, in their
vulnerability to failures of their constituents. For instance, self-similarity alone—independently of the
divergence of the second moment of the degree distribution—explains the absence of a percolation threshold in
random scale-free networks, with a proof that avoids the usual locally tree-like and other limiting assumptions
[5]. Moreover, the same proof applies to ensembles of graphs with highly non-trivial topologies as long as they
belong to the same self-similarity class. In [5], the absence of a percolation threshold was also proved and
numerically confirmed in ensembles of random networks embedded in metric spaces with strong clustering and
in ensembles of growing networks with bounded topological fluctuations.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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In this work, we extend the concept of self-similarity to multiplexes—defined as networks of nodes
interconnected with different classes of links, each class named a layer [9]. Out of the many different self-similar
ensembles in single networks, we chose for simplicity the configuration model and generalize it to multiplexes in
order to state explicitly the definition and significance of self-similarity in such structures. In particular, we study
the implications of self-similarity for the robustness to failure of multiplexes with and without interlayer degree
correlations. Circumscribing robustness to survival of the mutually percolated state [10, 11], we find a new
explanation based on self-similarity both for the observed fragility of uncorrelated scale-free systems of
networks [10, 12] and for their robustness to failure when correlations are present [13, 14]. We find that
interlayer degree correlations can change completely the global connectivity properties of self-similar scale-free
multiplexes, which can recover a zero percolation threshold and a continuous transition in the thermodynamic
limit qualitatively exhibiting so the ordinary percolation properties of single scale-free networks.

The paper is organized as follows. In section 2, we review the definition of self-similarity in single-layered
networks and extend it to multiplexes. In section 3, we discuss the self-similarity properties of the canonical
configuration model generalized to multiplexes, both with and without interlayer degree correlations. In
section 4, we use this model to deduce and discuss the implications of self-similarity on mutual percolation and
check our predictions against numerical simulations. Finally, we conclude in section 5.

2. Self-similar ensembles

In the next section, we first review our findings on this topic in the case of single networks and, then, extend them
to the case of multiplexes.

2.1. One-layered self-similar ensembles

Let G ({a}) be an ensemble of sparse graphs in the thermodynamic limit, where {a} is the set of model
parameters. For example, in the case of the Erdos—Rényi model [15, 16] the set {a} is just the average degree (k).
Consider a transformation rule T that for each graph G € G ({a}) selects one of G’s subgraphs. Denote the
ensemble of these subgraphs by Gy ({a}). The ensemble G ({a}) is called self-similar with respect to T'if the
transformed ensemble is the same as the original one except for some transformation of the model parameters,
thatis

Gr({a}) = G({ar}), (1)

where {ar } are the ensemble parameters after the filtering process. This definition does not assume anything
about the transformation rule T'and, in fact, the same ensemble can be self-similar under different rules. As a
simple example consider the Erdos—Rényi model with N >> 1nodes and connection probability among pairs of
nodes p = (k)/N.Now consider the transformation rule that selects Ny nodes uniformly at random out of the
original N nodes, along with their connections. It is easy to see that such subgraph belongs to the Erdos—Rényi
ensemble but with an average degree

Kyr = %<k>. 2)

Note that the average degree of subgraphs generated with this procedure is smaller than the average degree of the
original network.

In the ensembles studied in [4, 5]—including the standard configuration model with scale-free degree
distributions and zero clustering, scale-free networks with finite clustering and metric structure, and non-
equilibrium networks, like generic growing network models—, the only model parameter that changes after the
transformation is the average degree of the subgraph, (k)r. Typically, this average is a monotonic function of the
ratio between the size of the original network N and the size of the subgraph N, that is

e =f(%)<k>- 3)

In this case, the sign of its derivative determines the class of self-similarity of the model and, in turn, the
structural properties of the entire network. For instance, when f{x) is a monotonic increasing function, any
graph of the ensemble contains subgraphs with an arbitrary large average degree within the subgraph. This is the
case of the configuration model with a scale-free degree distribution with exponent 2 < y < 3 and, remarkably,
of many real-world networked systems [4]. This simple property, together with the fact that these subgraphs
belong to the same ensemble, imply a zero percolation threshold in the thermodynamic limit [5], evenif y > 3.
Remarkably, this is a consequence of self-similarity alone and not of the divergence of the second moment of the
degree distribution. The proofin [5] represents a powerful alternative to typical techniques applied to the study
of percolation in complex networks, since it avoids the usual locally tree-like and other limiting assumptions.
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2.2. Self-similar multiplexes

Formally, self-similarity of random multiplexes can be defined as for single networks. As in equation (1), let
M ({a}) be amultiplex ensemble of sparse graphs in the thermodynamic limit, where {a} is the set of model
parameters, now including sets of model parameters for each layer. Consider a transformation rule T that for
each multiplex M € M ({a}) selects one of M’s subgraphs. This transformation rule selects nodes in the
multiplex according to specific conditions imposed on each layer. Denote the ensemble of subgraphs by

M ({a}). The ensemble M ({a}) is called self-similar with respect to the transformation rule T'if the
transformed multiplex ensemble is the same as the original one except for some transformation of the model
parameters, thatis

Mr(la}) = M({ar}). (4)

To get insights on the nature and consequences of self-similarity in multiplexes, hereafter we focus on the soft
version of the configuration model, the simplest self-similar ensemble with a non-trivial degree distribution [5].
Nevertheless, the generalization to other ensembles is straightforward.

3. The soft configuration model

The configuration model is defined as the maximally random ensemble of graphs with a given degree sequence,
thatis, a predefined degree assigned to each single node of the network [17-19]. The soft configuration model
(SCM) is very similar to the original one except that, in this case, nodes are given their expected degrees and not
their actual degrees [20—23]. This makes the model more appropriate to deal with structural topological
correlations that are unavoidable when the degree distribution is broadly distributed [24, 25].

In the particular case of scale-free networks, graphs are generated by assigning to each of the Nnodes a
hidden variable k drawn from a power-law probability density p (k) = (y — 1)x{™'k77, k > k. Nodes with
expected degrees k and k” are then connected with probability r (x, k') = r (ukx’), where function r (x) < 1is
an arbitrary function with r (0) = 0 and 7' (0) # 0. Constant x4 fixes the average degree (k) through the
relation

2
®) *) (y— z) | .

#= Nr' (0) (x)? - Nr'(0O)xg\y =1

With this choice, it is easy to see that the average degree of a node with hidden variable x is proportional to
so that the degree distribution scales as well as a power law with exponenty [24]. When function r(x) is chosen
to be

1
1+ 1/x

r(x) = (6)
the model produces maximally random graphs with a given expected degree sequence [26—28]. Random graphs
with arbitrary structural correlations can be generated as well by choosing the appropriate connection
probability r(x) [24]. Hereafter, we use the maximally random ensemble with connection probability given in
equation (6). This particular ensemble has, in the thermodynamic limit, only two free parameters, the exponent
of the degree distribution y and the average degree (k). Notice that kg is a dummy parameter that can be absorbed
in the definition of the hidden variable x so that it can be set to unity at any moment. However, it is useful to keep
it during the transformation rule that we apply below. Unlike the regular configuration model (where the actual
degrees are fixed a priori) nodes in the canonical configuration model can end up having zero degree and,
therefore, the average degree (k) can take any positive value, even below 1.

As already discussed, ensemble self-similarity is always tied to a particular prescription to extract subgraphs
out of a given graph. In the case of ensembles of scale-free networks, the natural transformation rule selects
subgraphs by removing all nodes with degrees lower than a given threshold value. In the case of the SCM, the
transformation rule T removes nodes with hidden variable k below an arbitrary threshold k7 > kg. In [4, 5], we
proved that the ensemble of subgraphs so obtained is the same as the original one but with a transformed average
degree. In the case of ensembles of scale-free networks, the natural transformation rule selects subgraphs by
removing all nodes with degrees lower than a given threshold value (see figure 1).

3-r

= o Y7
<k>T=<k>(NﬁT) =<k>(—T) . )

Ko

This simple result provides important insights on how hubs are organized within the network. We first notice
that by varying continuously the threshold «r, we obtain a nested sequence of subgraphs. When y > 3, (k)risa
monotonic decreasing function of k7. This implies that subgraphs made of high degree nodes are very sparsely
connected among them. Thus, even if the original graph is globally connected, connectivity between two hubs is

3
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always mediated by chains of low degree nodes. When y < 3, (k)7 is a monotonic increasing function of k7. In
turn, this implies that, in the thermodynamic limit, any graph always contains subgraphs made of hubs with
arbitrary high connectivity, even if the average degree of the original graph (k) is arbitrarily small. This implies
that such graphs always have a giant connected component and, so, the original network has a zero percolation
threshold [5].

3.1. Generalization of the SCM for multiplexes: self-similarity properties

In this paper, we restrict our analysis to self-similar multiplexes with two layers. Generalizations to more than
two layers or other ensembles are again straightforward. In the two-layered SCM, each node is characterized by
two hidden variables, «, and x;, distributed according to

p(kar Kp) = — ﬁ( Ko ﬁ), (8)

Ka0Kpo Kao  Kbo

with k, > K0, Ky = Kpg, and / / P (x, y)dxdy = 1.Inthis way, (x,) and (k; ) are proportional to
1 Ja
parameters k,q and kg so that they can be set to unity at any moment. In each layer, pairs of nodes connect with
connection probabilities 7, (y,k,&, ) and n, (1, kK, ), where parameters y, and y;, read
(ka) (ko)
fo=—— - and = — (9)
Nr;(0){xa) Nry, (0) (xp)
Notice that the only relation between the two layers comes from the joint distribution p (x,, k;,), which may
encode interlayer degree-correlations.

As for the transformation rule T, analogously to the case of single networks, given a multiplex generated
from this ensemble, we remove nodes in the multiplex such that their hidden variables «, and «;, in each layer are
below certain threshold values x,r and ;1. Next, we analyze under which conditions the multiplex SCM is self-
similar.

3.1.1. Self-similar scale-free multiplexes with uncorrelated interlayer degrees

When «, and k;, are uncorrelated variables, the joint degree distribution corresponds to the factorization of the
degree distributions of each layer, so that self-similar ensembles of subgraphs can only be achieved if the one-
layer degree distributions are scale-free, that is

P y) = (7= 1)(5 — 1) /xtyn. (10)
Thus p (x, ) is the factorization of two homogeneous functions of degrees —y, and —y,, which gives a bi-
dimensional homogeneous function of degree —a = —(y, + 7,). After the transformation, the remaining nodes

in the subgraph are distributed according to the same scale-free distributions once we replace x,0 — k,r and
Kpo — Kpr. The number of nodes that remain in the subgraph is

Ya—1 =1
NTz(K”O) (@) N. (11)
Kar Kpr

The transformation does not change either the hidden variables of filtered nodes or their connection probability,
which implies that parameters y, and y, remain invariant in the subgraph. Therefore, by combining
equations (9) and (11), we conclude that the transformed ensemble is self-similar with re-scaled average degrees

<ka>T = (@) i [@] _”<ka> (12)

Kyt Ka0
and
Ya—1 3-n
Ka K
<kb>T=( O) (ﬂ] (ky)- (13)
KaT Kpo

Notice that in multiplexes with uncorrelated degrees the two thresholds, k,7 and k,r, are completely
independent.

3.1.2. Self-similar scale-free multiplexes with correlated degrees
In multiplexes with correlated degrees, self-similarity is achieved when the joint distribution p (x, y) is abi-
dimensional homogeneous function of degree a, that is

pA(ax> a)’) =a /A)(x) )’) Va. (14)
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When the degrees in each layer are correlated, this condition enforces a relation between the two thresholds, i. .
Kar/Ka0 = Kp1/Kpo> which are not independent anymore . Using the homogeneity property equation (14), it is
easy to check that the number of nodes within a subgraph with «, > x,r and simultaneously

Kp > Kpr = KpoKaT/Kao 18

a-2
Np = (@) N. (15)
Kar

Asin the case of uncorrelated multiplexes, the transformation does not change either the hidden variables of
filtered nodes or their connection probability, which implies that parameters y, and y, remain invariant in the
subgraph. Then, by combining equations (9) and (15) we conclude that the ensemble is self-similar with re-
scaled average degrees in each layer

Kao a0

4—a 4—a
<ka>T=["“T] (k,) and <kb>T=[’ij] (k). (16)

4. Robustness of mutually percolated states in self-similar scale-free multiplexes

As mentioned in the introduction, the percolation properties of systems of networks can be radically different as
compared to single networks depending on the patterns of connectivity between layers [10, 13, 14,29]. We shall
show that self-similarity can explain several of the previous results on the robustness of systems of networks and
can predict new behaviors in a large class of self-similar multiplexes. Notice that the results presented here are
qualitatively valid in multiplex ensembles beyond the SCM if those present similar self-similarity properties.

In multiplexes, the percolated state can be defined according to different criteria. Here, we assume that nodes
in each layer mutually depend on nodes in other layers and that only the nodes that belong to the giant mutually
connected component remain functional. The giant mutually connected component of a multiplex network
(MCC) is defined as the largest set of nodes that are mutually connected by at least one path in each layer
traversing nodes in the MCC [10, 11].

For single networks, perturbations in the form of a random failure of a fraction of 1 — p nodes produce
typically a critical phase transition for a specific value p,, so that below p. the network is fragmented into small
components. In multiplexes with a MCC, perturbations can propagate back and forth between the layers so that
even small initial failures can produce avalanches of damage leading to a discontinuous collapse of the MCC
[10]. Site percolation on random multiplexes has shown indeed a discontinuous hybrid transition at some finite
value of the number of nodes removed, where the size of the MCC drops abruptly to zero, like in a first order
transition, while the critical behavior is only observed above the transition, like in a second-order one [10, 12].
So, perturbations are amplified by the interaction between the layers and systems of networks are said to be more
fragile as compared to single networks. The presence of interlayer degree correlations can however revert the
situation [30]. Interdependent networks with mutually dependent nodes having identical degrees are
statistically more robust than random coupled networks with the same degree distribution. Besides, when
y < 3, they disintegrate via a second-order phase transition—in the same way as noninteracting networks—and
are thus very resilient against random failures [13]. More structured systems of correlated interconnected
networks [14] or with overlaps [31] have been proved to be robust to failure as well. In [31], the authors consider
link overlap (links existing in both layers simultaneously) as the source of correlations. In this case, overlapping
links form a single network, thus with the well-known percolation properties of complex networks. Notice,
however that while overlap induces inter-layer degree correlations, the opposite is not true in general.

Next, we assess the resilience of MCCs to random failures in scale-free multiplexes on the basis of their self-
similarity properties and check numerically our predictions. Before that, we note that the average degree (k) in
the SCM ensemble defined in section 3 is equivalent to the site percolation probability p and it can then be used
in robustness studies as the control parameter. Indeed, when a random fraction of 1 — p nodes is removed from
a given graph of the ensemble, the hidden variables k of the remaining nodes are distributed as in the original
graph and the connection probability among them remains unchanged. However, the number of nodes in the
subgraph is pN. Since y remains unchanged, equation (5) implies that this ensemble is self-similar under a
random removal of nodes with a modified average degree (k)7 = p (k). This means that, in the thermodynamic
limit, removing a random fraction of nodes 1 — p of a network with average degree (k) is equivalent to

? For the two thresholds to be independent and the ensemble self-similar, one would need a scaling relation of the type
p(ax, by) = a~*b~Pp (x, y) for any a and b. However, the only function in R? that satisfy this condition is the factorization of two power
laws, which correspond to the case of a multiplex without degree correlations.
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generating a graph of the same ensemble but with an average degree p (k). Because of this equivalence, hereafter
we use (k) as the control parameter of the percolation properties of the ensemble.

4.1. Fragility of uncorrelated scale-free multiplexes explained by self-similarity
Single scale-free self-similar networks in the thermodynamic limit with y < 3 always contain subgraphs made of
hubs with arbitrary high connectivity, even if the average degree of the original graph (k) is arbitrarily small,
which implies that such graphs always have a giant connected component and, so, a zero percolation threshold
[5]. This makes such structures robust to random failures. In the case of uncorrelated multiplexes, the question
is whether it is still possible to find a continuous set of nested subgraphs such that the average degrees within the
subgraphs increase in both layers simultaneously. In that case the multiplex would be robust to random failures,
being able to maintain a MCC despite perturbations.

To have a nested ensemble of subgraphs, ;1 must be either constant or a monotonic increasing function of
k.7 (or vice versa). Let k- = g (k,7) be such function. Then, the condition for equations (12) and (13) to be
simultaneously monotonic increasing functions of x,r can be obtained by imposing a positive derivative of
equations (12) and (13) with respect to k,, thatis

Ya — 1 < KaTg,(KaT) < 3 — Y

) (17)
3-1  Keg(ker) 7 -1

However, these inequalities can only hold if the lower bound is smaller than the upper bound, which is
equivalent to the inequality & = y, + ¥, < 4. Thisis clearly not possible in scale-free sparse graphs with y, and y,
in the range (2, 3), implying that, while it is possible to have a sequence of subgraphs with increasing average
degree in one of the layers (if one of the inequalities is satisfied), the same sequence of subgraphs has necessarily a
decreasing average degree in the other layer.

This result explains the fragility of scale-free systems of networks first reported in [10]. In single scale-free
networks, global connectivity is mainly provided by the interconnection of high degree nodes, which gives the
main explanation for their robustness. In uncorrelated scale-free multiplexes, the situation is different. Our self-
similarity argument starts by selecting a subgraph of high degree nodes in layer A and so an almost fully
connected subgraph that contains the majority of nodes of the giant component of layer A. However, as our
previous result shows, the average degree in layer B of the subgraph induced by the subgraph in A is smaller than
in B and, thus, its giant component in B—which is the candidate set to contain the MCC of the mutually
percolated multiplex—is also reduced. We could now select a subgraph of the subgraph in layer B such that its
average degree is high enough to contain its layer B giant component. However, the average degree of the
induced sub-subgraph in layer A will decrease below its original value, and so its giant component. This process
can be iterated at infinitum and, at each iteration, the size of the potential subgraph to contain a MCC is reduced.
We thus conclude that the MCC cannot be sustained by high degree nodes alone and must rely on the
connectivity of low degree nodes. This makes scale-free multiplexes always more fragile than more
homogeneous networks with the same average degree.

4.2.Robustness of correlated scale-free multiplexes explained by self-similarity

The picture changes completely when the degrees in each layer are positively correlated. In the case of sparse
scale-free self-similar multiplexes with uncorrelated degrees in the two layers, @ = y, + y, > 4 sothatthe
conditions for a stable MCC are not fulfilled. However, when k, and k; are positively correlated, it is possible to
find ensembles with 3 < a < 4. Asan example, consider the joint distribution

y(y — 12!

18
(x + y)yrtt (18)

ﬁ(x,)/) =

Its marginal distribution is p (x) = (y — 1)277}(1 + x)™7 . From here, the conditional average is

(x|y) = (v + y)/(y — 1), sothat the correlation between x and y increases when y — 2. The joint distribution
equation (18) isa homogeneous function with @ = y + 1. Therefore, according to equations (16), when y < 3
the ensemble has self-similar subgraphs with increasing average degree in both layers simultaneously. This
readily implies that the ensemble always possesses a MCC so that its percolation threshold is zero in the
thermodynamic limit. Besides, the ‘transition’ is continuous, in the sense that the relative size of the MCC
approaches zero monotonously when p — 0. This generalizes the result found in [13] for networks with
identical degrees in both layers and makes an important step forward as it quantifies the precise level of
correlations (and so the value of @) that is needed to go from a hybrid discontinuous transition to a continuous
one. We should also note that, as opposed to the result in [13], our derivation is exclusively based on the property

Notice thata homogeneous distribution in two dimensions does not imply that its marginal is also a homogeneous function.
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Figure 1. [llustration of a self-similar ensemble of graphs embedded into a metric space, a circle of radius R ~ N, undera
transformation that removes nodes with degrees below a certain threshold [4]. In this visualization, each node is given a radial
coordinate inversely proportional to its degree so that we obtain the desired subgraph by removing all nodes outside the blue dashed
circle.

of self-similarity and, thus, also applies to ensembles that are not locally tree-like, like networks embedded in
metric spaces [4, 5].

4.3. Numerical simulations

To check numerically the predicted percolation properties of self-similar scale-free multiplexes, we generated
two-layered multiplexes using the canonical configuration model. Inall cases, N = 5 X 10° and (kyp, ) = 2.
For uncorrelated scale-free multiplexes, we used the joint probability distribution equation (10), while we
implemented correlations according to equation (18). In practice, for each node we first draw a hidden degree
in one of the layers according to the marginal probability density j (x). The hidden degree in the other layer is
then generated from the conditional probability density p (y|x) = p (x, y)/p (x) with the value of x previously
generated. Once hidden degrees in both layers have been assigned, each pair of nodes is evaluated and
connected in each layer with a probability given by equation (6). Finally, to compute mutually connected
components, we implemented an efficient algorithm based on [32], which keeps track of all the MCCs, not
only the giant, present in a multiplex. The algorithm represents each layer of the multiplex by the dynamic
connectivity structure defined in [33]. This structure allows for maintaining information about network
components and their sizes, while updating the network by deletion or insertion of edges. The algorithm
works in two phases. First, we find MCCs in the initial multiplex and second, we calculate the size of the giant
MCQC for all values of the parameter p.

To compute all MCCs in the initial multiplex, we identify connected components for each layer separately
and if needed, we reconnect all single components by adding a minimum number of ad hoc edges. Thus, after
this step every layer is a single connected component and the multiplex a single MCC. Next, we sequentially
delete all ad hoc edges. Each single removal creates two separated components in the given layer. We then check
all possible node pairs, where each node in the pair belongs to a different component and remove, in all other
layers, edges connecting them. Whenever any removed edge breaks a connected component into two, we have to
continue with the removal of all edges that connect disconnected components in all other layers. Finally, when
all ad hoc edges are removed, all layers consist of connected components corresponding to MCCs. In the second
phase, we generate a random sequence defining the order of node removals. Removal of each node is
accomplished by removing all its adjacent edges from all layers. Every edge is removed in the same way as ad hoc
edges in the first phase of the algorithm. Similarly as in the first phase, after removing the node all layers consist
of connected components corresponding to MCCs. The size of the largest component is outputted as the size of
the largest MCC for the corresponding p value.

In figure 2, we show the average degrees in the subgraphs and the size of the largest connected components
in each layer and the MCC as a function of the filtering thresholds k7 and x, . In all cases, networks are scale-
free with y = 2.8. In uncorrelated multiplexes, the average degrees of the subgraphs cannot increase
simultaneously as the thresholds increase. This is shown in figure 2(a) for x,7 = k7 and in figure 2(c) for
Kpr = kpo = 1. As clearly seen in the figures, the only possibilities are that the average degrees decrease
simultaneously (when k1 = k1) or that the average degree of one of the layers increases while the other
decreases (when kr is constant). This induces the fragility of the MCC which, as shown in figures 2(b) and
(d), reduces its size abruptly at some relatively small value of the threshold. Interlayer degree correlations
change completely the picture. In figures 2(e) and (f), we show the average degrees in the subgraphs and the
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Figure 2. Average degrees (left column) and the size of the largest connected components (right column) as a function of filtering
parameters K, and k7. Panels (a) and (b) show results for a multiplex network with uncorrelated degrees where k,r = kpr. Panels
(c) and (d) show results for a multiplex network with uncorrelated degrees where ;7 is fixed to the minimum value k. Panels (e)
and (f) show the results for a multiplex network with correlated degrees where k,1 = k7. Solid lines correspond to the analytical
results given by equations (12), (13) and (16). In all cases, the multiplex network is composed of two layers with N = 5 x 10° nodes,
7 = 2.8, {kmin ) = 2, and we evaluated the absolute size of the largest connected components S,r-and Sprin individual layers A and B,
the size of the MCC St, and the size of the network Nrafter applying the corresponding transformation.

size of the different components for k,7 = k,r in a canonical configuration model multiplex ensemble with
the joint degree distribution given by equation (18). In this case, it is possible to produce sequences of
subgraphs with increasing average degrees in both layers simultaneously, so that the MCC becomes very
robust. Finally, the inset in figure 2(f) shows the relative size of the MCC (relative to the remaining number of
nodes after the filtering process), which approaches 1 for large values of the thresholds, indicating that, as
predicted, such self-similar multiplex contains a small but macroscopic subgraph that is completely
connected in both layers simultaneously.

To get further insights into the percolation properties of self-similar multiplexes, we adopt the
conventional percolation criterion of measuring the breakdown of the largest MCC. We computed the
relative size of the largest MCC versus the fraction of nodes p remaining in the multiplex for different values of
the power-law exponent y. Results are shown in figure 3(a) for multiplexes with uncorrelated degrees and in
figure 3(b) for correlated ones. For all values of , the transition between the mutually percolated and the
fragmented states is discontinuous in the uncorrelated case while it is continuous and approaching zero in the
correlated case. This can be corroborated by the scaling of the susceptibility vs. the system size, where the
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Figure 3. Comparison between the percolation properties of scale-free multiplexes with uncorrelated (left panel) and correlated (right
panel) degrees. Panels a and b show the relative size of the largest mutually connected component versus the fraction p of nodes
remaining undamaged. In both cases N = 5 x 10° and y = 2.2,2.5,and 2.8. Each curve corresponds to one complete random
sequence of node removals. Panels c and d show the susceptibility y as a function of site occupation probability p for scale free
multiplexes of y = 2.8 and different sizes. The different curves y (p) are computed from 10* complete random sequences of node
removals. In all cases, multiplexes are composed of two layers and (ki ) = 2.

susceptibility y is defined as °

2N 2
RGOS

©) (1

Here Sis the size of the largest MCC at any value of p and averages are taken over a large number of complete
random sequences of node removals. This quantity is able to distinguish between discontinuous, continuous,
and hybrid phase transitions. In continuous phase transitions, y shows a clear peak close to the critical point that
diverges as the system size increases. Instead, in discontinuous transitions, y shows a discontinuity at the critical
point but no dependence on the system size. In the case of hybrid phase transitions, y shows a diverging peak
approaching the critical point from one side, a discontinuity, and then a size independent behavior on the other
side. According to these criteria, figure 3(c) indicates that the transition is hybrid in multiplexes with
uncorrelated degrees whereas figure 3(d) indicates that y has a continuous divergence with a peak that
approaches zero in the thermodynamic limit as a power law, while the height of the peak diverges also as a power
law. This is clearly visible in figure 4, where we show the behavior of the position and height of the peak, p,,, and
Xy for different values of y. These results clearly corroborate our theoretical prediction about a zero
percolation threshold but with critical fluctuations when p — 0.

5. Conclusions

Self-similarity is a widespread property in network models and has also been observed in many real-world
networks [4]. Beyond the mathematical beauty of self-similarity, this property has important implications for
the structural properties of networks. The power of the concept was illustrated in single-layered networks by the
proof of a zero percolation threshold for a general class of self-similar networks, which only required the self-
similarity property with a hierarchy of nested subgraphs whose average degrees grow with their depth in the
hierarchy [5] and without the need of usual limiting requirements.

> Notice that this is not the standard definition of susceptibility, which is defined with Nin the denominator instead of (S). However, both
definitions have the same critical properties and diverge as power laws at the critical point of a continuous phase transition. From a numerical
point of view, our definition has been proven more useful in heterogeneous networks and this is why we adopt it here. Nevertheless, the
relation between their critical exponents can be found in [34].
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Figure 4. Size dependence of the position and height of the peak of the susceptibility equation (19) for y = 2.5 and 2.8. Dashed lines
are power law fits to the data.

In this paper, we have extended the concept to multiplexes and illustrated its importance by assessing the
robustness of scale-free multiplexes in terms of their self-similarity properties. To state in a clear and explicit way
the definition and relevance of self-similarity, we have focused on the SCM ensemble. However, we should stress
that the results presented here are qualitatively valid in other multiplex ensembles with similar features, that is,
with similar self-similarity properties, degree distributions and interlayer degree correlations. Interestingly, the
observed fragility of scale-free multiplexes or the robustness to failure of correlated systems of networks can be
explained and predicted based only on their self-similarity characteristics. In particular, we have found that
scale-free multiplexes can recover a zero percolation threshold and a continuous transition in the
thermodynamic limit, and so the ordinary percolation properties of single scale-free networks. Self-similarity
can as well have important implications for other critical phenomena taking place in multiplex structures when
the critical point is a function of the connectivity of the system.
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